Description

FA5331P(M) and FA5332P(M) are control ICs for a power factor correction system. These ICs use the average current control system to ensure stable operation. With this system, a power factor of 99% or better can be achieved.
FA5331P(M) is a 1st generation IC and FA5332P(M) is 2nd generation IC which light-load characteristics are improved.

\square Features

- Drive circuit for connecting a power MOS-FET(Io= $\pm 1.5 \mathrm{~A}$)
- Pulse-by-pulse overcurrent and overvoltage limiting function
- Output ON/OFF control function by external signals
- External synchronizing signal terminal for synchronous operation with other circuits
- Undervoltage malfunction prevention function
- Low standby current ($90 \mu \mathrm{~A}$ typical) for simple start-up circuit
-16-pin package (DIP/SOP)
- $\pm 2 \%$ accuracy reference voltage for setting DC output and overvoltage protection [FA5332P(M) only]
- When there is a possibility of light-load operation, FA5332P(M) is suitable.

■ Block diagram

Pin No.	Pin symbol	Description
1	IFB	Current error amplifier output
2	IIN-	Inverting input to current error amplifier
3	VDET	Multiplier input
4	OVP	Overvoltage protection input
5	VFB	Voltage error amplifier output
6	VIN-	Inverting input to voltage error amplifier
7	GND	Ground
8	OUT	Output
9	VC	Power supply to output circuit
10	VCC	Power supply
11	CS	Soft-start
12	ON/OFF	Output ON/OFF control input
13	REF	Reference voltage
14	SYNC	Oscillator synchronization input
15	CT	Oscillator timing capacitor and resistor
16	IDET	Non-inverting input to current error amplifier

■ Dimensions, mm

- SOP-16

- DIP-16

FA5331P

FA5332P

Absolute maximum ratings

Item	Symbol	Rating		Unit
		FA5331P(M)	FA5332P(M)	
Supply voltage	Vcc, Vc	30	30	V
Output current	lo	± 1.5	± 1.5	A
Input voltage	Vsync, Von/off, VvinVvdet, Vovp	-0.3 to +5.3	-0.3 to +5.3	V
	Videt	-10.0 to +5.3	-10.0 to +5.3	V
Total power dissipation$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	Pd	850 (DIP-16) *1	850 (DIP-16) *1	mW
		650 (SOP-16) *2	650 (SOP-16) *2	
Operating temperature	Topr	-30 to +85	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-40 to +150	-40 to +150	${ }^{\circ} \mathrm{C}$

Notes:
*1 Derating factor $\mathrm{Ta}>25^{\circ} \mathrm{C}: 6.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (on PC board) *2 Derating factor $\mathrm{Ta}>25^{\circ} \mathrm{C}: 5.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (on PC board)

Recommended operating conditions

Item	Symbol	FA5331P(M)		FA5332P(M)	Unit	
		Min.	Max.	Min.	Max.	
Supply voltage	Vcc, Vc	10	28	10	28	V
IDET terminal input voltage	VIDET	-1.0	0	-1.0	0	V
VDET terminal input voltage	VVDET	0	2.0	0	2.4	V
VDET terminal peak input voltage	VPVDET	0.65	2.0	0.65	2.4	V
Oscillator timing capacitance	CT	-	-	330	1000	pF
Oscillator timing resistance	RT	-	-	10	75	$\mathrm{k} \Omega$
Oscillation frequency	fosc	10	220	15	150	kHz
Noise filter resistance connected to IDET terminal	Rn	0	100	0	27	Ω

■ Electrical characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{CT}=470 \mathrm{pF}, \mathrm{R} \mathrm{T}=22 \mathrm{k} \Omega$, $\mathrm{VcC}=\mathrm{VC}=18 \mathrm{~V}$)
Oscillator section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Oscillation frequency	fosc	$\begin{aligned} & \mathrm{C}_{\mathrm{T}}=470 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{T}}=22 \mathrm{k} \Omega \end{aligned}$	68	75	82	68	75	82	kHz
Frequency variation 1 (due to supply voltage change)	fdv	$\mathrm{Vcc}=10$ to 30V		1			1	3	\%
Frequency variation 1 (due to temperature change)	fdT	$\mathrm{Ta}=-30$ to $+85^{\circ} \mathrm{C}$		5			5	8	\%
Output peak voltage	Vosc			3.55			3.55		V
Synchronizing input peak voltage	Vsync	SYNC terminal voltage	1.5			1.5			V

Voltage error amplifier section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Reference voltage	Vr		1.48	1.54	1.60	1.519	1.550	1.581	V
Input bias current	Ibe		-500	-50		-500	-50		nA
Open-loop voltage gain	Ave		80			80			dB
Output voltage	VoE+	No load	3.5	3.8		3.5	3.8		V
	Voe-			50	200		50	200	mV
Output source current	loE+	Voe=0V		-900			-900		$\mu \mathrm{A}$

Current error amplifier section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Input threshold voltage	Vthidet	$\begin{aligned} & \text { VDET }=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{FB}}=\mathrm{V}_{\mathrm{r}, \mathrm{R}_{\mathrm{n}}=30 \Omega} \end{aligned}$	-	-	-	0	30	60	mV
Input bias current	IBC	$\mathrm{IDET}=0 \mathrm{~V}$	-350	-230		-350	-250	-150	$\mu \mathrm{A}$
Open-loop voltage gain	Avc		80			80			dB
Output voltage	Voc+	No load	3.5	3.8		3.5	3.8		V
	Voc-			50	200		50	200	mV
Output source curent	loc+	$\mathrm{VIFB}=0 \mathrm{~V}$		-900			-900		$\mu \mathrm{A}$

Reference voltage section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Output voltage	Vref		4.8	5.0	5.2	4.8	5.0	5.2	V
Voltage variation 1 (by supply voltage variation)	VRDV	$\mathrm{Vcc}=10$ to 30V			25			25	mV
Voltage variation 2 (by load change)	VRdT	$\mathrm{IOR}=0.1$ to 2 mA		2			2	5	mV

Multiplier section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
VDET terminal input voltage	VmVdet		0		2.0	0		2.4	V
VFB terminal input voltage	Vmvfb		1.5		3.5	1.5		3.5	V
Output current	Im	VIIN-=0V		-65			-65		$\mu \mathrm{A}$
Output voltage coefficient	K			-1.0			-1.0		-

Pulse width modulation circuit section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Maximum duty cycle	Dmax		89	92	95	89	92	95	\%

Output circuit section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Output voltage	Vol	$\mathrm{lo}=100 \mathrm{~mA}$		1.3	1.8		1.3	1.8	V
	VOH	$\begin{aligned} & \mathrm{lo}=-100 \mathrm{~mA} \\ & \mathrm{~V} \mathrm{cc}=18 \mathrm{~V} \end{aligned}$	15.5	16.5		15.5	16.5		V
Rise time	tr	No load		300			300		ns
Fall time	tr	No load		200			200		ns

Soft-start circuit section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Input threshold voltage	Vthcso	Duty cycle=0\%		0.1			0.1		V
	Vthcsm	Duty cycle=Dmax		3.55			3.55		V
Charge current	Ichg	CS terminal $=0 \mathrm{~V}$		-10			-10		$\mu \mathrm{A}$

Overvoltage protection circuit section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Input threshold voltage	Vthovp	OVP terminal voltage	1.56	1.64	1.72	1.617	1.650	1.683	V
Input threshold voltage/reference voltage(VTHOVP/ Vr)	α		-	-	-	1.044	1.065	1.086	-
Delay time	TPDOVP			200			200		ns

Overcurrent limiting circuit section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Input threshold voltage	VTHOCP	IDET terminal voltage	-1.25	-1.15	-1.05	-1.20	-1.10	-1.00	V
Delay time	TPDOCP			200			200		ns

Output ON/OFF circuit section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Threshold voltage	Vthonoff	$\mathrm{Ta}=-30^{\circ} \mathrm{C}$	-	-	-	3.7		4.3	V
		$\mathrm{Ta}=+25^{\circ} \mathrm{C}$	2.0		3.5	2.8		3.4	V
		$\mathrm{Ta}=+85^{\circ} \mathrm{C}$	-	-	-	1.5		2.8	V
Input current at ON	Ithon	ON/OFF terminal voltage $=3.5 \mathrm{~V}$		60	120		-	-	$\mu \mathrm{A}$
		ON/OFF terminal voltage=$=$ THONOFF		-	-		10	40	$\mu \mathrm{A}$

Undervoltage lockout circuit section

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
OFF to ON threshold voltage	Vthuon		14.3	15.3	16.3	14.6	15.3	16.0	V
ON to OFF threshold voltage	Ithuoff		7.6	8.3	9.0	7.6	8.3	9.0	V
Voltage hysteresis	Vuhys			7.0			7.0		V

Overall device

Item	Symbol	Test condition	FA5331P(M)			FA5332P(M)			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
Standby current	Iccst	$\mathrm{Vcc}=14 \mathrm{~V}$		90	140		90	140	$\mu \mathrm{A}$
Operating-state supply current	IcCop			10	15		10	15	mA
OFF-state supply current	Iccoff	Pin 12=0V		1.1	1.8		1.1	1.8	mA

\square Description of each circuit

1. Oscillator section

This section outputs sawtooth waves oscillating between 0.15 and 3.55 V using the capacitor charge and discharge characteristics. Figure 1 shows how to connect the required external components to this circuit. The oscillation frequency is determined by the Ст and R_{T} values. The relationship between the CT and RT values is shown in characteristic curves. Pin 14 (SYNC) is a synchronizing input terminal whose threshold voltage is about 1V. As Fig. 1 shows, input rectangular synchronizing signal waves to pin 14 through an RC circuit. Set the free-running frequency about 10% lower than the synchronizing signal frequency. Connect a clamp diode (D1) to prevent an unwanted current inside the IC.

2. Voltage error amplifier and overvoltage limiting circuit

The voltage error amplifier forms a voltage feedback loop to keep the output voltage stable. The positive input terminal of this amplifier is connected to the reference voltage (Vr). Fig. 2 shows how to connect the required external components to this circuit.
The output voltage (Vo) is as follows:
$\mathrm{Vo}=\frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 1} \cdot \mathrm{Vr}$
FA5331: Vr=1.54V(typ.)
FA5332: Vr=1.55V(typ.)
Connect a resistor and a capacitor in parallel across error amplifier output pin 5 and error amplifier negative input pin 6 to set the voltage gain (Av).
The $A v$ value is as follows:
$A v=\frac{R 4}{R 3(1+j \omega C 1 \cdot R 4)}$
Error amplifier cutoff frequency (fc) is as follows:
$\mathrm{fc}=\frac{1}{2 \pi \mathrm{C} 1 \cdot \mathrm{R} 4}$

If 100 or 120 Hz ripples appear at the error amplifier output, the active filter does not operate stably. To ensure stable operation, set the fc value to about 1 Hz .

An overvoltage detection comparator (C1) is built in to limit the voltage if the output voltage exceeds the design value. The reference input voltage (Vp) is as follows:
$\mathrm{Vp}=\alpha \cdot \mathrm{Vr}$
$\alpha=1.065$

The connections shown in Fig. 2 limit the output voltage to α times the design value.

Fig. 1 Oscillator

Fig. 2 Voltage error amplifier and overvoltage limiting circuit

3. Current error amplifier and overcurrent limiting circuit

The current error amplifier forms a current loop to change the input circuit current into sinusoidal waves. As Fig. 3 shows, the multiplier output is connected to pin 2 (IIN -) through a resistor (RA) to input the reference current signal. Pin 16 (IDET) is a current input terminal. Design the circuit so that the voltage at pin 16 will be within the range from 0 (GND potential) to -1.0 V . Connect a phase correction resistor and capacitors across pin 1 (amplifier output) and pin 2. See Fig. 4 for the expected gain characteristics of the circuit shown in Fig. 3.
Here,
$Z=\frac{1}{2 \pi R 5 \cdot C 3}$
$p=\frac{1}{2 \pi R 5 \cdot C}$
$\mathrm{C}=\frac{\mathrm{C} 2 \cdot \mathrm{C} 3}{\mathrm{C} 2+\mathrm{C} 3}$
The voltage gain (G1) between Z and P of the circuit (gain between pins 16 and 1) is given as follows:
$\mathrm{G} 1=20 \cdot \log _{10}\left\{0.75\left(\frac{\mathrm{R} 5}{\mathrm{RA}}+1\right)\right\}$
Ensure an adequate phase margin by selecting C 1 and C 2 so that the p / z ratio is about 10 . The current error amplifier output is used as an input to the comparator for PWM.

The overcurrent detection comparator (C2) limits an overcurrent. The threshold voltage for overcurrent detection at pin 16 is -1.15 V for FA5331 and -1.10 V for FA5332. Connect noise filters Rn and Cn to prevent the voltage at pin 16 from fluctuating due to noise, causing the comparator to malfunction. For Rn, select a resistor of up to 100Ω for FA5331 and up to 27Ω for FA5332. (See P64, 4. No-load operation)

4. Comparator for PWM

Figure 5 shows the comparator for PWM. When the oscillator output (Va) is smaller than the current error amplifier output (Vc), the comparator output is high and the output ON signal is generated at pin 8 . Pin 11 (CS) is a terminal for soft start. This terminal charges capacitor C 4 with the internal constant current $(10 \mu \mathrm{~A})$ for a soft start. Priority is given to Vb and Vc whichever is lower.

5. Multiplier

The multiplier generates a reference current signal. Input a fully rectified sinusoidal signal voltage into pin 3 (VDET). Design the circuit to keep the peak voltage at pin 3 within a range from 0.65 V to 2 V for FA 5331 and 0.65 V to 2.4 V for FA5332. The multiplier output voltage (Vm) is roughly given as follows (see Fig. 6):
$\mathrm{Vm}=1.25-(\mathrm{Ve}-1.55) \cdot \mathrm{Vs}$
As Fig. 3 shows Vm is internally connected to pin 2 (IIN-) of the current error amplifier A2 through a $10 \mathrm{k} \Omega$ resistor. (See the characteristic curve, page 66 for the input and output characteristics of the multiplier.)

Fig. 3 Current error amplifier and overcurrent limiting circuit

Fig. 4 Voltage gain-frequency

Fig. 5 PWM comparator

Fig. 6 Multiplier

6. ON/OFF control input circuit

Figure 7 shows the ON/OFF control input circuit. If pin 12 is set to the high level (enable), this IC outputs pulses from the OUT pin. If pin 12 is set to the low level (disable), the internal bias power (reference voltage) goes off and the IC current consumption becomes about $1 / 10$ that of its ON state. The output level of pin 11 (CS for soft start) also goes low.

7. Output circuit

As Fig. 8 shows, pin 9 is configured as the high power terminal (VC), independent of the IC power terminal (VCC). This pin allows an independent drive resistance when the power MOSFET is ON and OFF. If the drive resistances in the ON and OFF states are Rg (on) and Rg (off), the following formulas can be used to determine the total gate resistance Rg:
$R g(o n)=R g 1+R g 2$ \qquad
$R g(o f f)=R g 2$
In the standby state, the output level of pin 8 is held low. If the potential at the drain terminal of the power MOSFET fluctuates, the gate-drain capacitance may drive the IC output voltage at pin 8 to below 0 . Once the voltage at pin 8 reaches -0.6 V , an unwanted current flows in the IC and a large abnormal current flows in the output circuit when the output transistor is turned on. To prevent this, connect a Schottky diode across the gate and source of the power MOSFET.

Fig. 7 ON/OFF control input circuit

Fig. 8 Output circuit

Design advice

1. Start circuit

Figure 9 shows a sample start circuit. Since the IC current while the Vcc pin voltage rises from 0 V to $\mathrm{V}_{\text {thon }}$ is as small as $90 \mu \mathrm{~A}$ (typ.), the power loss in resistor R_{A} is small. If an additional winding is prepared in the voltage step-up inductor (L), power to the control circuit can be supplied from this circuit. However, the voltage must be stabilized by a regulator circuit (REG) to prevent an excess rise of the IC supply voltage (Vcc). Use fast or ultra-fast rectifier diodes for the rectifier circuit (DB1) of the winding for high-frequency operation.

2. Current sensing resistor

The current sensing resistor (Rs) detects the current in the inductor. Rs is used to make the input current sinusoidal. The current in the inductor produces a negative voltage across Rs. The voltage is input to IC pin 16 (IDET). Determine the value of $R s$ so that the peak voltage of the IDET pin is -1 V .

Rs $=\frac{\text { Vin }}{\sqrt{2} \cdot \operatorname{Pin}}$
Vin: Minimum AC input voltage (effective value) [V]
Pin: Maximum input power [W]
Since the threshold voltage of the overcurrent limiting circuit (pin 16) is -1.15 V for FA5311 for and -1.10 V for FA5332, the peak input current limit (ip) is determined by:
FA5331: $\mathrm{ip}=\frac{1.15}{\text { Rs }}$
FA5332: $\mathrm{ip}=\frac{1.10}{\text { Rs }}$

3. Voltage step-up type converter

Figure 9 shows the basic circuit of a voltage step-up type converter which is used as a power factor correction.

(a) Output voltage

For stable operation, set the output voltage to be 10 V or more over the peak value of the maximum input voltage. When using this IC for an active filter, set the output voltage (Vo) as follows:
$\mathrm{Vo} \geq \sqrt{2} \cdot \mathrm{Vin}+10 \mathrm{~V}$
Vin: Maximum AC input voltage [V] (effective value of sinusoidal wave)
(b) Voltage step-up inductor

When using a voltage step-up converter in continuous current mode, the ratio of inductor current ripple to the input peak current is set to about 20%. Determine the inductance as follows:
$\mathrm{L} \geq \frac{\operatorname{Vin}^{2}(\mathrm{Vo}-\sqrt{2} \cdot \operatorname{Vin})}{\gamma \cdot \mathrm{fs} \cdot \operatorname{Pin} \cdot \mathrm{Vo}}$
Vin: Minimum AC input voltage (effective value) [V]
γ : Ratio of inductor current ripple (peak to peak value) to the input peak current (about 0.2)
fs: Switching frequency [Hz]
Pin: Converter's maximum input power [W]
As the characteristic curves on page 66 show, the peak voltage at pin 3 should be at least 0.65 V , even when the AC input voltage is minimal. Considering this, determine R6 and R7 shown in Fig. 6.

Fig. 9 Start circuit

Example: FA5332

When Vin is 85 V and Pin is 300 W , the formulas of (11) and (12) can be calculated as:
$\operatorname{Rs}=\frac{85}{\sqrt{2 \cdot 300}}=0.2[\Omega]$
$i p=\frac{1.10}{0.2}=5.5[\mathrm{~A}]$
And,
$\sqrt{2} \cdot 85 \cdot \frac{\mathrm{R} 6}{\mathrm{R} 6+\mathrm{R} 7}=0.65[\mathrm{~V}]$
If $R 6$ is set to $2.7 \mathrm{k} \Omega$ to satisfy these formulas, $R 7$ becomes $480 \mathrm{k} \Omega$.

Example:

When Vin is 85 V , Vo is 385 V , and γ is 0.2 , the formula of (14) can be calculated as:
$\mathrm{L} \geq \frac{2.48 \times 10^{4}}{\mathrm{fs} \cdot \operatorname{Pin}}[\mathrm{H}]$

(c) Smoothing capacitor

When a voltage step-up converter is used in a power factor correction circuit, the input current waveform is regulated to be in-phase with the input voltage waveform. Therefore, ripple noise of twice the input line frequency appears at the output. The output voltage (vo) is represented as:

$$
\begin{equation*}
v_{o}=V_{0}-\frac{l_{0}}{2 \cdot \omega_{0} \cdot \mathrm{C}} \cdot \operatorname{Sin} 2 \omega_{0} t \tag{16}
\end{equation*}
$$

Vo: Average output voltage
lo: Output current
$\omega_{0}: 2 \pi$ fo (fo: Input power frequency, 50 or 60 Hz)
C: Smoothing capacitor value
Therefore, the peak-to-peak value of the output ripple voltage Vrp is given by:
$\operatorname{Vrp}=\frac{10}{\omega_{0} C}$
Using formula (17), determine the necessary C value.

4. No-load operation

The following condition should be meet to prevent from overvoltage and audible noise during no-load or light-load operation.

For FA5331 (Fig.10)

$0.85 \cdot \alpha \leq \operatorname{RoFST}(\mathrm{k} \Omega) \leq \alpha$
where, $\alpha=\frac{\left(3.5 \cdot 10^{3}-0.26 \cdot \mathrm{Rn}_{\mathrm{n}} \cdot 12\right.}{42+0.26 \cdot \mathrm{Rn}_{\mathrm{n}}}$
and, $\mathrm{R}_{\mathrm{n}} \leq 100 \Omega$
and, Rx: don't connect.

- You must not connect $R \times$ which reduces DC gain of current error amplifier.
- You can connect R5 which is series with capacitor C3.

For FA5332 (Fig.11)
$R_{n} \leq 27 \Omega$
and, Rx: don't connect.

- You must not connect Rx which reduces DC gain of current error amplifier.
- You can connect R5 which is series with capacitor C3. -If you connect RoFst, dead time of AC input current will extend.

5. How to prevent from intermittent switching of low frequency

An intermittent switching, which frequency is lower than 10 Hz , occurs in some applications.
In this case, it is possible to prevent from this intermittent switching to reduce feedback gain by decreasing the resistance of R4. (See Fig. 2)
You must check the effect thoroughly because this intermittent switching depends on load, temperature and input condition.

Fig. 10

Fig. 11

Characteristic curves $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$
Oscillation frequency (fosc) vs.
timing resistor resistance (RT)
FA5331

Oscillation frequency (fosc) vs.
ambient temperature (Ta)

Output duty cycle vs. CS terminal voltage (Vcs)

FA5332

FA5332

ON/OFF control terminal current vs.
ON/OFF control terminal voltage

IIN- terminal voltage vs. VDET terminal voltage
Multiplier I/O
FA5331

IDET terminal voltage vs. IIN- terminal voltage
Normal operation
FA5331

H-level output voltage (VOH) vs.
output source current (ISOURCE)

FA5332

L-level output voltage(VoL) vs. output sink current (ISINK)

Overcurrent limiting threshold voltage vs.
ambient temperature (Ta)
FA5331

OVP terminal threshold voltage vs.
ambient temperature (Ta)

Supply current (lcc) vs. supply voltage (Vcc) Normal operation

FA5332

FA5332

Supply current (lcc) vs. supply voltage (Vcc) OFF mode

- Application circuit

- Example of FA5331 application circuit

- Example of FA5332 application circuit

Parts tolerances characteristics are not defined in the circuit design sample shown above. When designing an actual circuit for a product, you must determine parts tolerances and characteristics for safe and economical operation.
Fuji Semiconductor, Inc. - P.O. Box 702708 - Dallas, TX 75370-972-733-1700 - www.fujisemiconductor.com

